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Accelerating RPG
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Results: RPG achieves
the same ImageNet
accuracy with half of the
ResNet-vanilla DoF. RPG
also outperforms other
state-of-the-art

compression approaches.

Recurrent Parameter Generator (RPG, special case)

RPG shares a fixed set of parameters in a ring and uses them to
generate parameters of different parts of a neural network,
whereas in the standard neural network, all the parameters are
independent of each other, so the model gets bigger as it gets
deeper. The third section of the model starts to overlap with the
first section in the model ring, and all later layers share generating
parameters for possibly multiple times.
Destructive weight sharing: ¢, e {boplb c B(N,),p c P(N,)}

Random sign flip  permutation

RPG Increases the Model Generalizability

ImageNet pose estimation direct evaluation
train-val gap train-val gap on ObjectNet
Acc gap (%) | vanilla | RPG Acc gap (%) | noshared w | shared w | RPG R18 | R34-RPG | R34
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¢ ResNet-RPG has lower training-validation accuracy gap on ImageNe

classification and

pose estimation.

¢ ResNet with RPG has higher performance on out-of-distribution
dataset ObjectNet. RPGis trained on ImageNet only and directly
evaluated on ObjectNet.

such as ImageNet, which may unleash new studies and findings.

RPG Converges Faster
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RPG converges faster than the vanilla model
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RPG converges faster for different batch sizes



