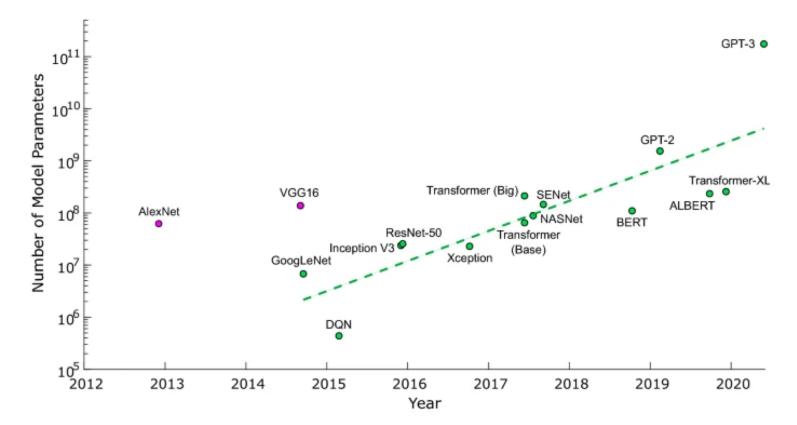


Compact and Optimal Deep Learning with Recurrent Parameter Generators

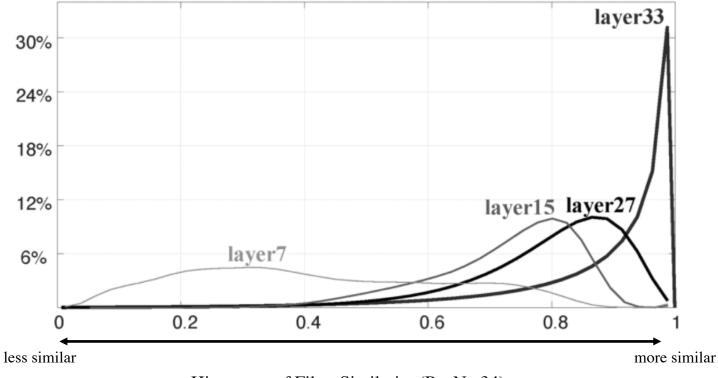
Jiayun Wang^{*1} Yubei Chen^{*3,4} Stella X. Yu^{1,2} Brian Cheung⁵ Yann LeCun^{3,4} ¹UC Berkeley / ICSI ²University of Michigan ³Meta ⁴New York University ⁵MIT * indicates equal contribution

Exponential Growth in Neural Network Size



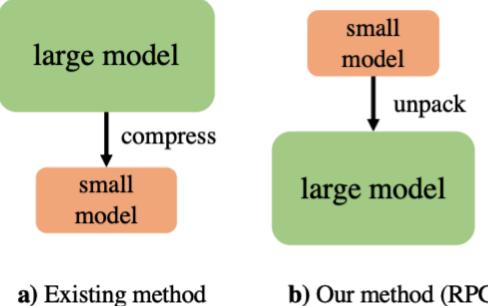
Freely scalable and reconfigurable optical hardware for deep learning. Bernstein et al. (2021)

Neural Nets are Redundant: Filter Similarity Increases with Depth



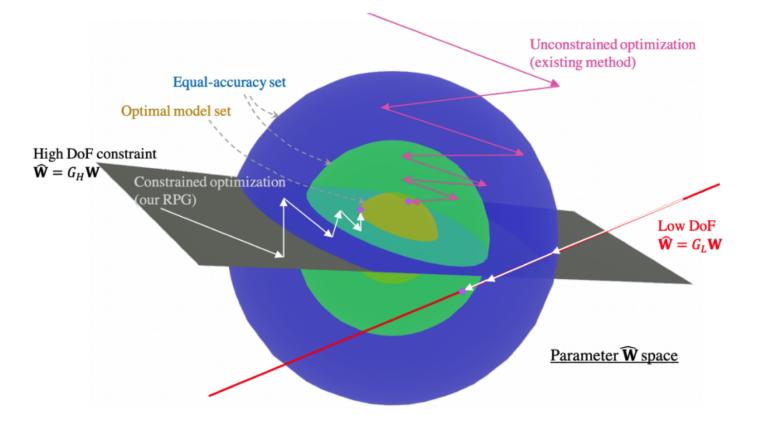
Histogram of Filter Similarity (ResNet34)

New Paradigm for Compact and Optimal Deep Learning

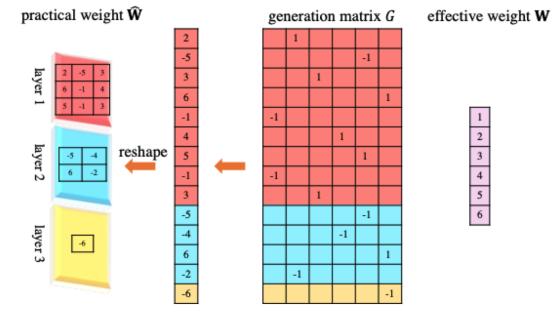


b) Our method (RPG)

Linearly Constrained Neural Optimization



Linearly Constrained Neural Optimization

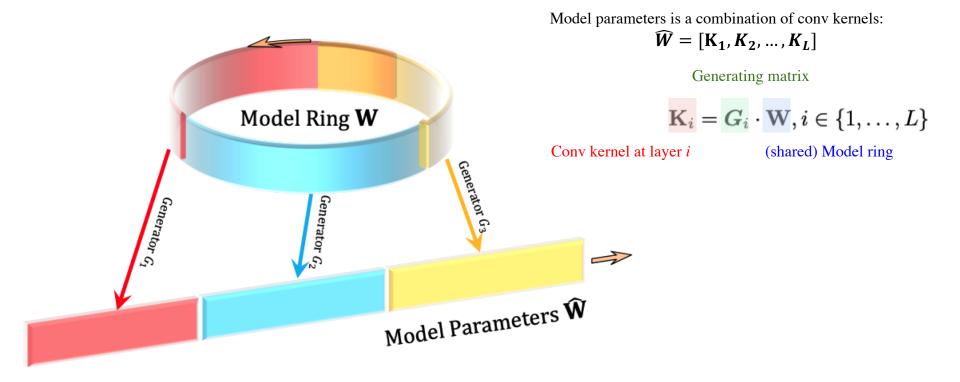


Networks are optimized with a linear constraint $\widehat{\mathbf{W}} = G\mathbf{W}$

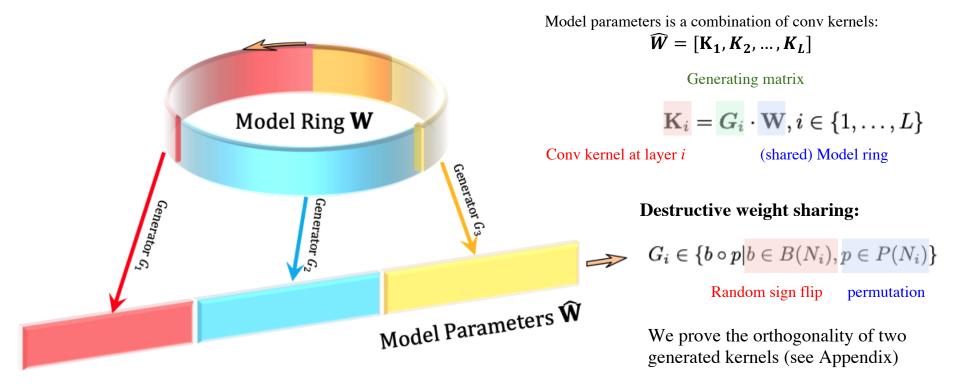
The constrained (practical) parameter $\hat{\mathbf{W}}$ of each network layer was generated by the generating matrix G from the free (effective) parameter \mathbf{W} , which is directly optimized.

 $\hat{\mathbf{W}}$ is unpacked large model parameter while the size of \mathbf{W} is the model DoF (degree of freedom).

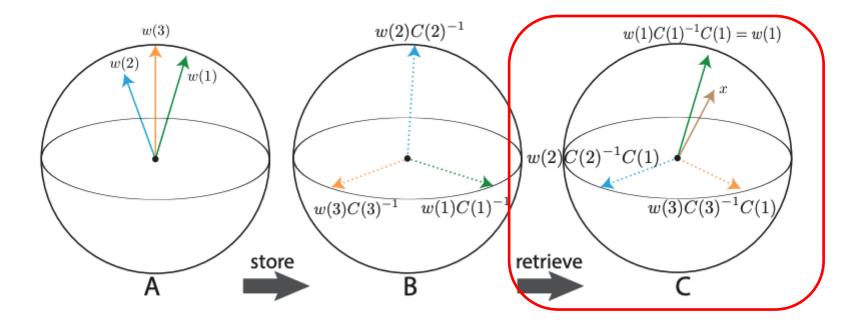
Recurrent Parameter Generator (Special Case)



Recurrent Parameter Generator (Special Case)



Why Orthogonal? Retrieval from the Associative Memory



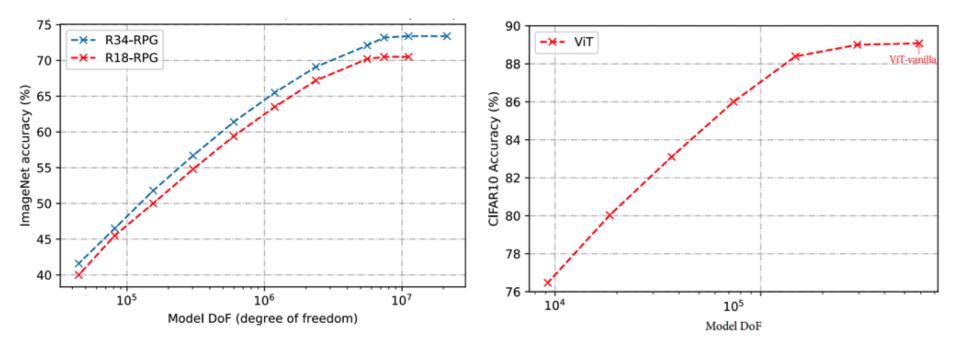
Superposition of many models into one. Cheung et al. (2020)

Extreme Model DoF Compression

Acc. (%)	R18-RPG		R18-vanilla	R34-RPG			R34-vanilla	
ImageNet	40.0	67.2	70.5	70.5	41.6	69.1	73.4	73.4
CIFAR100	60.2	75.6	77.6	77.6	61.7	76.5	78.9	79.1
Model DoF	45K	2M	5.5M	11M	45K	2M	11M	21M

For ImageNet classification, RPG achieves 96% of ResNet18's performance with only 18% DoF (the equivalent of one convolutional layer) RPG achieves 52% of ResNet34's performance with only 0.25% DoF!

Log-Linear DoF-Accuracy Relationship



- Accuracy and model DoF follow a *power law*.
- The exponents of the power laws are the same for ResNet18-RPG and ResNet34-RPG on ImageNet.
- RPG enables under-parameterized models for large-scale datasets such as ImageNet, which may unleash new findings.

RPG Performs Better at the Same Model DoF

Image Classification

Pose Estimation

Multitask Regression

	DoF	Acc. (%)
R18-vanilla	11M	77.5
R34-RPG.blk	11M	78.5
R34-RPG	11M	78.9
R34-random weight share	11M	74.9
R34-DeepCompression [23]	11M	72.2
R34-Hash [12]	11M	75.6
R34-Lego [67]	11M	78.4
R34-vanilla	21M	79.1

Acc. (DoF)	CPM [62]	RPG	No shared w.		
1x sub-net	84.7 (3.3M)				
2x sub-nets	86.1 (3.3M)	86.5 (3.3M)	87.1 (6.7M)		
4x sub-nets	86.5 (3.3M)	87.3 (3.3M)	88.0 (13.3M)		

RMSE (%)	Depth	Normal
Vanilla model	25.5	41.0
RPG with shared BN	24.7	40.3
Reuse & new BN	24.0	39.4
Reuse & new BN & perm. and reflect.	22.8	39.1

RPG can be Pruned and Quantized for Faster Runtime

Pruning RPG

fine-grained pruning

	acc before	acc after \downarrow DoF	acc drop	model DoF
R18-IMP [18]	92.3	90.5	1.8	274k
R18-RPG	95.0	93.0	2.0	274k

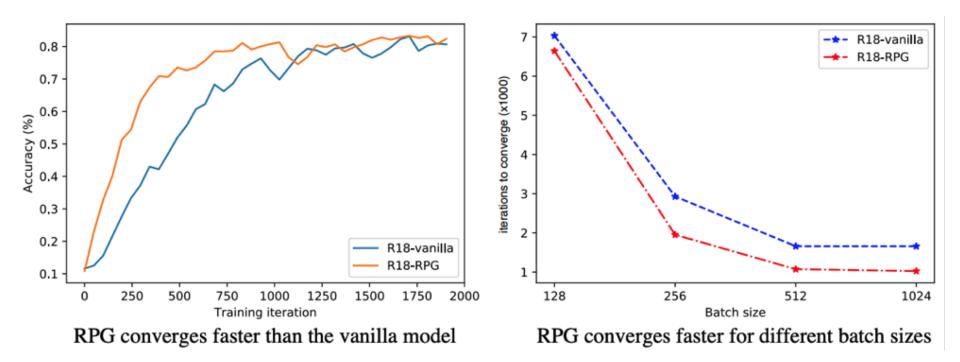
coarse-grained pruning

	DoF before pruning	Pruned acc.	FLOPs
R18-Knapsack	11.2M	69.35%	1.09e9
Pruned R18-RPG	5.6M	69.10%	1.09e9

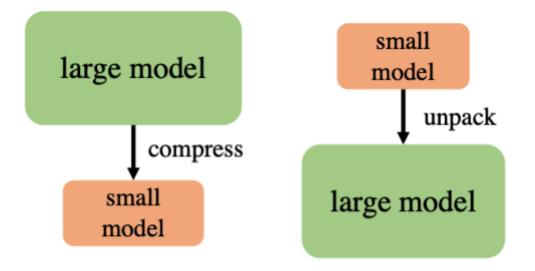
Quantize RPG

	# Params	Acc before	Acc after \downarrow quantization	Acc drop
R18-vanilla	11M	69.8	69.5	0.3
R18-RPG	5.6M	70.2	70.1	0.1

RPG Converges Faster



Summary: New Paradigm for Compact and Optimal Deep Learning



a) Existing method b) Our method (RPG)

RPG directly optimizes a lean model with a small DoF. Faster and higher accuracy.