Spatial Transformerfor3D Point Clouds

Jiayun (Peter) Wang Rudrasis Chakraborty
Stella X. Yu

MOTIVATIONS

\leftrightarrow Convolutions on point clouds:

$$
F_{i}^{(t)}=\sum_{j \in \mathcal{N}_{i}^{(t)}} w_{i j}^{(t)} F_{j}^{(t-1)}
$$

Previous work (PointNet, PointNet++, PointCNN, ...):

$$
\mathcal{N}^{(1)}=\mathcal{N}^{(2)}=\ldots=\mathcal{N}^{(T)}
$$

Single and fixed neighborhood.
Ours: $\quad \mathcal{N}^{(1)} \neq \mathcal{N}^{(2)} \neq \ldots \neq \mathcal{N}^{(T)}$
Multiple and dynamic neighborhoods,
learned from point coordinates P and feature F.

Point cloud neighborhood

\triangleleft Diverse transformations at each layer enhance learning capacity
\& Corresponding transformations at each layer capture similar ge ometric shapes regardless of in-class variations.

Spatial Transformers

We propose different linear and nonlinear spatial transformers.

\diamond Affine: • Transform original point cloud $P \in \mathbf{R}^{3 \times N}$:

$$
G_{i}^{(t)}=A_{i}^{(t)} P
$$

- Apply k-nearest neighbor search on transformed points $G_{i}^{(t)}$
- Obtain dynamic local neighborhood $\mathcal{N}_{i}^{(t)}$
- Perform specific point convolution on this graph: $F_{i}^{(t)}=\operatorname{CONV}_{W}\left(\mathcal{F}^{(t-1)}, \mathcal{N}_{i}^{(t)}\right)$
- Concatenate all the sub-features to get the output feature: $\mathcal{F}^{(t)}=\operatorname{CONCAT}\left(F_{1}^{(t)}, F_{2}^{(t)}, \ldots, F_{\left.k^{(t)}\right)}^{(t)}\right)$,
\diamond Projective: Transform in homogeneous coordinates:

$$
\widetilde{G}_{i}^{(t)}=B_{i}^{(t)} \widetilde{P}
$$

\diamond Deformable: • Deformation matrix $D_{i}^{(t)} \in \mathbf{R}^{3 \times N}$ allows every point the freedom to move:

$$
P_{i}^{(t)}=A_{i}^{(t)} P+D_{i}^{(t)}
$$

- Transformer is learned from both point location and feature

$$
G_{i}^{(t)}=\left[\begin{array}{ll}
A_{i}^{(t)} & \mathcal{C}_{i}^{(t)}
\end{array}\right]\left[\begin{array}{c}
P \\
\mathcal{F}^{(t-1)}
\end{array}\right]=C_{i}^{(t)}\left[\begin{array}{c}
P \\
\mathcal{F}^{(t-1)}
\end{array}\right]
$$

Each layer has k spatial transformers:

Experimental Results

$\stackrel{\rightharpoonup}{ }$ Classification: 2% average gain on ModelNet40
\diamond Part Segmentation: 8\% gain on earphone and rocket. 1% average gain.

(a) Classification.
(b) Part segmentation

3D Indoor Scenes Semantic Segmentation:
5% gain for sofa, 3% gain for board, 2% average gain.

